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Outline

= 2D Nanomaterials: Timeline

= 2D Nanomaterials: Who are they?
= Synthetic Methods: Bottom-up

= Synthetic Methods: Top-Down

= Qverview and Questions



The “pillars” of characterization °
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The viewpoint: bird-view vs frog °

Micro characterization vs Bulk

George Steinmetz, National Geographic 2005



The combination of differentt methods is
needed to understand the (nano)material
completely




What can we measure to characterize NMs?

Interaction with EMF Mass changes
(Spectroscopy) \/ (Gravimetric)
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Physical interactions
(Scanning probes)



Interaction with electromagnetic field
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Interaction with electromagnetic field °
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If we excite with green light where should we expect the emission?



SEM

Morphological
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Morphology: Scanning Electron Microscopy
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Can you tell witch one is a scattering, absorption and emission process?



Morphology: Scanning Electron Microscopy
(SEM)
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Yang et al. Surface and Interface Analysiss 2012
Wang et al. Advanced Energy Materials 2018



Morphology: Scanning Electron Microscopy (SEM)
ETHzirich

(A) secondary electron image of
silicon aluminium oxide using an in-
lens secondary electrons (SE)
detector; (B) backscattered electron
(BSE) image of palladium
nanoparticles, the particles appear as
the brighter spots against the

Al, O, support.
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Davies. Thomas E., et al. The Canadian Journal of Chemical Engineering 2022
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Morphology: Scanning Electron Microscopy
(SEM)

Considerations:
« SEM is a common technique for NMs surface morphology characterization
* The sample is normally dried on a support (no limit about thickness or size)
* NMs made conductive

* Resolution is between 2 and 20 nm

Applications:

Surface analysis, surface morphology, microanalysis

Do you know how to make NMs conductive?



Morphology: Transmission Electron Microscopy
(TEM)
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Morphology: Transmission Electron Microscopy °
(TEM)
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Morphology: Transmission Electron Microscopy °
(TEM)

Considerations:

TEM is a consolidated technique for NMs characterization

The must be thin (<200 nm) and is deposited onto a special grid

The instrument is expensive

The sample preparation require “experts”

Resolution is between 0.15 and 0.2 nm
Applications:

Surface morphology, microanalysis, size distribution



Morphology: Atomic Force Microscopy (AFM)

A very fine tip gropes the surface gradually. With the help of a LASER beam the
movement becomes visible.
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Morphology: Atomic Force Microscopy (AFM)

1 um
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Mochalin et al. Nature Comm 2019, Chen et al. ACS App Mat Inter 2020
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Morphology: Atomic Force Microscopy (AFM) °

Considerations:
« AFM is physical technique to characterize the NMs morphology
« Depending of the NMs 3 techniques can be used

« AFM can be used at RT, atmospheric condition or in solution
» The analysis requires long time for acquisition

* Normally an “expert” is implied in the analysis
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Structural Characterizations:
Thermogravimetric Analysis

The sample is weighed and placed in a pan.

The NMs are then placed in a controlled oven.

The oven is settled to a T ramp in a controlled inert or oxidizing atmosphere
During the process, the weight of the sample is constantly measured
During the measurement the thermogram of the sample is measured

TGA is used also to quantify the functionalization.

Differential analysis (DTG) is used to measure the T of decomposition

Reina et al. Carbon 2022
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Structural Characterizations: °
X-Ray Diffraction analysis (XRD)
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Do you think that XRD is a bulk or a micro characterization?
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Structural Characterizations:
X-Ray Photoelectron Spectrosco .o s,

(70 - 110A) of the sample
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XPS is based on photoelectric effect Xerays (1.5 kV)

Electron
Take-Off-Angle

The sample in a thin film is placed at high vacuum

8i0; 1 Si°
Sample

Monochromatic X-Ray source is used as excitation source
Samples are usually solid because XPS Si(2p) XPS signals
requires ultra-high vacuum (<10 torr) from a Silicon Wafer

y Photo-electron Spectroscopy* b

Electron Spectrum

Electron are then collected and their binding energy is measured:
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XPS is a surface technique (10 nm dept)

XPS is applied for any kind of NM




Structural Characterizations:

X-ray Photoelectron Spectrosco
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Structural Characterizations: Raman
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Structural Characterizations: Raman

Raman Spectroscopy allows to precisely characterize the NMs
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The NMs are normally in a film or placed on a solid substrate - - B
The laser is coupled to a microscope that allows to select the area to analyze
The Raman spectra is a unique fingerprint of the NM to analyze

Microanalysis of large area and mapping can be also performed
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Martin et al. Advanced Functional Materials 2019



Functional
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Functional Characterizations: Fluorescent bioimaging °
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Easy Surface
Modification

High Conductivity

Large Specific
Surface Area

H*ion
pH Sensing

Glucose Sensing

Jang et al. Front. Chem. 2019

Current / pA

704 - GO /N-doped graphene electrode
60 GO, /graphenc clectrode
1 - Gogiassy carbon electrode
50 - pd
' o
30 -
'
20- :
10- e
04 #’_ﬁﬂ_




Functional Characterizations: Photothermia
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Functional Characterizations: Photothermia °
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Conclusions

2D nanomaterials can be synthesized by different techniques.
We must first consider the final application of the 2D-NM.

Morphological, structural, and functional characterizations are imperative to assert the NMs.



